Transplanting stem cells derived from umbilical cord blood cells and menstrual blood cells may offer future therapeutic benefit for those suffering from stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS), says a team of neuroscience researchers from the University of South Florida’s Department of Neurosurgery and Brain Repair and collaborators from three private-sector research groups, Saneron CCEL Therapeutics, Inc., Tampa, FL, Cryo-Cell International, Inc., Oldsmar, FL, and Cryopraxis, Cell Praxis, BioRio, Rio de Janeiro, Brazil.
Their collective paper outlining the potential benefits of transplanting these stem cells is published in the current issue of Cell Transplantation (20:1), now freely available on line here.
“Umbilical cord blood cells and stem cells derived from menstrual blood are relatively easy to obtain, appear to be able to differentiate into many kinds of cells, and are immunologically immature, offering them the potential to promote cell survival rather than play a cell replacement role when transplanted,” said Dr. Paul Sanberg, Distinguished University Professor and executive director of the Center of Excellence on Aging and Brain Repair at the University of South Florida.
According to Dr. Eduardo Cruz, CEO of Cell PRAXIS BioRio, human umbilical cord blood cells (hUCBs) are limited to collection at the time of birth, but menstrual blood-derived stem cells (MenSCs) could be collected once a month for 40 years from women during their reproductive stage.
“Both hUCBs and MenSCs have been used successfully in laboratory experiments with animal models of diseases,” noted Dr. Cruz.
MenSCs have been transplanted into animal models of stroke and have been shown to be able to differentiate into a number of neural cell types. Transplanting hUCBs into animal models of stroke, Alzheimer’s disease, and ALS has demonstrated their therapeutic potential for reducing inflammation, a key component of many neurodegenerative diseases.
According to Mercedes Walton, CEO of Cryo-Cell International, Inc., stem cell science and stem cell therapies are emerging with amazing speed in the last several years. “Our breakthrough discovery that menstrual blood cells contain proliferative stem cells that can differentiate into many different types of cells, including cardiac and neural cells, has opened new therapy possibilities,” she said.
Source: David Eve
Cell Transplantation Center of Excellence for Aging and Brain Repair