Up to today, researchers have been limited to running just a few DNA samples at a time, at a cost of SEK 100,000 (c. USD 16,000) per run. Now researchers at the Royal Institute of Technology (KTH) in Stockholm have hit upon a new method that allows 5,000 samples to be run at the same time and at the same price. This cuts the cost per sample result considerably and constitutes a world record for the number of tests run in a single DNA sequencing analysis.
“We were virtually forced to invent a method for running numerous DNA tests at once. Otherwise our analyses would have taken an incredibly long time and would have cost enormous sums of money,” says Peter Savolainen, a researcher in biology at KTH.
He, his research colleague Afshin Ahmadian, and the then doctoral candidate Mårten Neiman jointly invented the new method, which means that DNA sequencing analyses can be performed both in record time and at an improbably low cost.
“Today the great majority of samples are run ten at a time. This yields a cost of SEK 10,000 (c. USD 1,600) per sample. We have run 5,000 samples at the same time at the same cost, that is, SEK 100,000. This computes to SEK 20 (c. USD 3) per sample,” says Peter Savolainen.
He points out several areas where his and his colleagues’ new method can have a great impact. One of them is cancer research, where there is a great need to scan numerous cell samples from many individuals. This is to see which cells and genes are involved in the cancer.
“Another field where our method can be of huge importance is in organ transplants. Many DNA analyses are needed to create a database for matching organ donors with transplant recipients. This will be of major importance to DNA research,” says Peter Savolainen.
He adds that now, even before the method is official, there are several projects at the Science for Life Laboratory (where KTH is involved) in line to use this mode of analysis. What’s more, it is possible to scale up the method so that even more samples can be tested simultaneously.
“Simply put, we mark each sample in an ingenious way with an ID, so each test result can be distinguished,” says Peter Savolainen.
Source: Royal Institute of Technology